- 4532 (1978). (15) R. Breslow and J. L. Grant, *J. Am. Chem. Soc.*, **99**, 7745 (1977).
- (16) The "pKs" obtained by the electrochemical method are *relative* numbers. Although these pKs (in acetonitrile) are based on an arbitrary reference standard [the ion pair pK of triphenylmethane in cyclohexylamine (CHA) solution] a rough comparison with pKs in Me₂SO, which are based on an absolute standard (direct measurements in the low pK region), can be made because the pK of triphenylmethane in Me₂SO (30.6¹⁷) is close to its ion pair pK in CHA (31.5¹⁴) and because relative pKs for acids forming dalocalized anions do not differ much with medium.¹⁷

(17) W. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum, and N. R. Vanier, J. Am. Chem. Soc., 97, 7006 (1975).

> Donald Algrim, Joseph E. Bares John C. Branca, F. G. Bordwell*

Department of Chemistry, Northwestern University Evanston, Illinois 60201 Received July 31, 1978

Additions and Corrections.

Vol. 40, 1975

Naotake Takaishi, Yoshiaki Inamoto,* Kiyoshi Tsuchihashi, Kazuaki Yashima, and Koji Aigami: Identification of Intermediates in the Trifluoromethanesulfonic Acid Catalyzed Adamantane Rearrangement of 2,3-endo- and -exo-Tetramethylenenorbornane. Page 2930. Chart I. Structures 10 (A₁) and 11 (A₃) should be:

Page 2932. Table II. ¹³C NMR signals should be read as:

compd		
notation as unknown	structure	¹³ C NMR signals, ppm (multiplicity, rel intensity)
A_2	4	24.8 (t, 3), 40.5 (t, 6), 60.4 (s, 0.9)
$\overline{A_1}$	10	28.4 (q, 1), 31.8 (t, 6), 52.8 (d, 3),
A_3	11	27.8 (q, 1), 31.7 (t, 4), 39.4 (t, 2),
		45.5 (d, 2), 51.4 (s, 0.3), 61.7 (d, 1)

Slayton A. Evans* and Andrew L. Ternay, Jr.*: Preferred Conformer Assignments of Diaryl Sulfoxides Employing Aromatic Solvent Induced Shifts.

Page 2294. Experimental Section. Syntheses labeled cis-9-ethylthioxanthene S-oxide (cis-5) and cis-9-isopropylthioxanthene Soxide (cis-6) should be relabeled trans. Syntheses labeled trans-9ethylthioxanthene S-oxide (trans-5) and trans-9-isopropylthioxanthene S-oxide (trans-6) should be relabeled cis. Table I is correct. (We thank Professor Y. Tamura for noting this exchange.)

Werner Herz* and Ram P. Sharma: A trans-1,2-cis-4,5-Germacradienolide and Other New Germacradienolides from *Tithonia* Species.

Page 3122. Column 1, lines 24–25 should read: The CD curve of 1a exhibits a positive Cotton effect while that of 4a is negative, although no change has occurred . . .

Vol. 41, 1976

Courtland Symmes, Jr., and Louis D. Quin*: 1-Vinylcycloalkenes in the McCormack Cycloaddition with Phosphonous Dihalides. Stereochemistry of Some Resulting Bicyclic Phospholene Oxides.

Page 242. The ³¹P NMR shifts on line 26 are reversed; the entry should read: δ +28.6 (13a, 56%) and +26.2 (13b, 44%).

K. Grant Taylor^{*} and Melvin S. Clark, Jr.: Aliphatic Azoxy Compounds. 5. Functionalization of (Z)-Phenylmethyldiazene 1-Oxide.

Page 1145. Column 1, line 7 from bottom: "(ϵ 1900)" should be "(ϵ 11 900)".

D. C. Baker, J. Defaye, A. Gadelle, and D. Horton*: Reduction of Ketones with Incorporation of Deuterium at the α Position: Anomalous Reduction of Keto Sugar Derivatives.

Page 3836. Table I. The data for compound 9 should read: 9, $CDCl_3^{e}$, 4.95 d (H-1), 4.79 dd (H-2), 4.15 t (H-3), 3.52 t (H-4), 3.84 sx (H-5), 4.29 q (H-6), 3.74 t (H-6'), 5.53 s (PhCH), 2.12 s (OAc), 3.39 s (OMe), 7.40 m (aryl).

Page 3837. Table II. The data for compound 9 should read: 9, $CDCl_3^e$, 3.7 $(J_{1,2})$, 9.5 $(J_{2,3})$, 9.5 $(J_{3,4})$, 9.5 $(J_{4,5})$, 4.0 $(J_{5,6})$, 10 $(J_{5,6'})$, 9.5 $(J_{6,6'})$.

Charles A. Kingsbury,* Dan Draney, Alan Sopchik, William Rissler, and Dana Durham: Survey of Carbon-13-Hydrogen Splittings in Alkenes.

Page 3863. Reference to the elegant earlier work of Vogeli and von Philipsborn, Org. Magn. Reson., 7, 617 (1975), should have been given.

Vol. 42, 1977

Padmanabhan Sundararaman and Werner Herz*: Oxidative Rearrangements of Tertiary and Some Secondary Allylic Alcohols with Chromium(VI) Reagents. A New Method for 1,3-Functional Group Transposition and Forming Mixed Aldol.

Page 817. The lower part of Scheme II was reproduced incorrectly. The correct formulation is as follows:

C. E. Reineke* and C. T. Goralski: Thermal Rearrangement of O-(2,4,6-Trihalophenyl) N,N-Dimethylthiocarbamates. An Abnormal Pathway.

Page 1140. Structure 6 has a bromine atom deleted at the seven position and should appear as:

